Lesson 5
ELECTROCARDIOGRAPHY I
Components of the ECG

Richard Pflanzer, Ph.D.
Associate Professor Emeritus
Indiana University School of Medicine
Purdue University School of Science

William McMullen
Vice President
BIOPAC Systems, Inc.

BIOPAC® Systems, Inc.
42 Aero Camino, Goleta, CA 93117
(805) 685-0066, Fax (805) 685-0067
Email: info@biopac.com
Web: www.biopac.com

Manual Revision PL3.7.5
03162009
© BIOPAC Systems, Inc.
I. INTRODUCTION

The main function of the heart is to pump blood through two circuits:

1. **Pulmonary circuit**: through the lungs to oxygenate the blood and remove carbon dioxide; and
2. **Systemic circuit**: to deliver oxygen and nutrients to tissues and remove carbon dioxide.

Because the heart moves blood through two separate circuits, it is sometimes described as a dual pump.

In order to beat, the heart needs three types of cells:

1. Rhythm generators, which produce an electrical signal (SA node or normal pacemaker);
2. Conductors to spread the pacemaker signal; and
3. Contractile cells (myocardium) to mechanically pump blood.

The Electrical and Mechanical Sequence of a Heartbeat

The heart has specialized pacemaker cells that start the electrical sequence of depolarization and repolarization. This property of cardiac tissue is called inherent rhythmicity or automaticity. The electrical signal is generated by the sinoatrial node (SA node) and spreads to the ventricular muscle via particular conducting pathways: internodal pathways and atrial fibers, the atrioventricular node (AV node), the bundle of His, the right and left bundle branches, and Purkinje fibers (Fig 5.1).

When the electrical signal of a depolarization reaches the contractile cells, they contract—a mechanical event called systole. When the repolarization signal reaches the myocardial cells, they relax—a mechanical event called diastole. Thus, the electrical signals cause the mechanical pumping action of the heart; mechanical events always follow the electrical events (fig. 5.2).

The SA node is the normal pacemaker of the heart, initiating each electrical and mechanical cycle. When the SA node depolarizes, the electrical stimulus spreads through atrial muscle causing the muscle to contract. Thus, the SA node depolarization is followed by atrial contraction.

The SA node impulse also spreads to the atrioventricular node (AV node) via the internodal fibers. (The wave of depolarization does not spread to the ventricles right away because there is nonconducting tissue separating the atria and ventricles.) The electrical signal is delayed in the AV node for approximately 0.20 seconds when the atria contract, and then the signal is relayed to the ventricles via the bundle of His, right and left bundle branches, and Purkinje fibers. The Purkinje fibers relay the electrical impulse directly to ventricular muscle, stimulating the ventricles to contract (ventricular systole). During ventricular systole, ventricles begin to repolarize and then enter a period of diastole (Fig. 5.2).

Although the heart generates its own beat, the heart rate (beats per minute or BPM) and strength of contraction of the heart are modified by the sympathetic and parasympathetic divisions of the autonomic nervous system.

- The sympathetic division increases automaticity and excitability of the SA node, thereby increasing heart rate. It also increases conductivity of electrical impulses through the atrioventricular conduction system and increases the force of atrioventricular contraction. Sympathetic influence increases during inhalation.
- The parasympathetic division decreases automaticity and excitability of the SA node, thereby decreasing heart rate. It also decreases conductivity of electrical impulses through the atrioventricular conduction system and decreases the force of atrioventricular contraction. Parasympathetic influence increases during exhalation.

The Electrocardiogram (ECG)

Just as the electrical activity of the pacemaker is communicated to the cardiac muscle, “echoes” of the depolarization and repolarization of the heart are sent through the rest of the body. By placing a pair of very sensitive receivers (electrodes) on other parts of the body, the echoes of the heart’s mechanical activity can be detected. The record of the electrical signal is called an electrocardiogram (ECG). You can infer the heart’s mechanical activity from the ECG. Electrical activity varies through the ECG cycle as shown below (Fig. 5.2):
Because the ECG reflects the electrical activity, it is a useful “picture” of heart activity. If there are interruptions of the electrical signal generation or transmission, the ECG changes. These changes can be useful in diagnosing changes within the heart. During exercise, however, the position of the heart itself changes, so you cannot standardize or quantify the voltage changes.

Components of the ECG

The electrical events of the heart (ECG) are usually recorded as a pattern of a baseline (isoelectric line), broken by a P wave, a QRS complex, and a T wave. In addition to the wave components of the ECG, there are intervals and segments (Fig. 5.2).

- The **isoelectric line** is a point of departure of the electrical activity of depolarizations and repolarizations of the cardiac cycles and indicates periods when the ECG electrodes did not detect electrical activity.
- An **interval** is a time measurement that includes waves and/or complexes.
- A **segment** is a time measurement that does not include waves and/or complexes.

Table 5.1 Components of the ECG & Typical Lead II Values*

<table>
<thead>
<tr>
<th>ECG COMPONENT</th>
<th>Measurement area...</th>
<th>Represent...</th>
<th>Duration (seconds)</th>
<th>Amplitude (millivolts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waves</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>begin and end on isoelectric line (baseline); normally upright in standard limb leads</td>
<td>depolarization of the right and left atria.</td>
<td>0.07 – 0.18</td>
<td>< 0.25</td>
</tr>
<tr>
<td>QRS complex</td>
<td>begin and end on isoelectric line (baseline) from start of Q wave to end of S wave</td>
<td>depolarization of the right and left ventricles. Atrial repolarization is also part of this segment, but the electrical signal for atrial repolarization is masked by the larger QRS complex (see Fig 5.2)</td>
<td>0.06 – 0.12</td>
<td>0.10 – 1.50</td>
</tr>
<tr>
<td>T</td>
<td>begin and end on isoelectric line (baseline)</td>
<td>repolarization of the right and left ventricles.</td>
<td>0.10 – 0.25</td>
<td>< 0.5</td>
</tr>
<tr>
<td>Intervals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-R</td>
<td>from start of P wave to start of QRS complex</td>
<td>time from the onset of atrial depolarization to the onset of ventricular depolarization.</td>
<td>0.12-0.20</td>
<td></td>
</tr>
<tr>
<td>Q-T</td>
<td>from start of QRS complex to end of T wave</td>
<td>time from onset of ventricular depolarization to the end of ventricular repolarization. It represents the refractory period of the ventricles.</td>
<td>0.32-0.36</td>
<td></td>
</tr>
<tr>
<td>R-R</td>
<td>from peak of R wave to peak of succeeding R wave</td>
<td>time between two successive ventricular depolarizations.</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>Segments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-R</td>
<td>from end of P wave to start of QRS complex</td>
<td>time of impulse conduction from the AV node to the ventricular myocardium.</td>
<td>0.02 – 0.10</td>
<td></td>
</tr>
<tr>
<td>S-T</td>
<td>between end of S wave and start of T wave</td>
<td>period of time representing the early part of ventricular repolarization during which ventricles are more or less uniformly excited.</td>
<td>< 0.20</td>
<td></td>
</tr>
<tr>
<td>T-P</td>
<td>from end of T wave to start of successive P wave</td>
<td>time from the end of ventricular repolarization to the onset of atrial depolarization.</td>
<td>0.0 – 0.40</td>
<td></td>
</tr>
</tbody>
</table>

*Notes: Tabled values represent results from a typical Lead II setup (wrist and ankle electrode placement) with Subject heart rate ~75 BPM. Values are influenced by heart rate and placement; values for torso placement would be different.
Leads

The particular arrangement of two electrodes (one positive, one negative) with respect to a third electrode (the ground) is called a lead. The electrode positions for the different leads have been standardized. For this lesson, you will record from Lead II, which has a positive electrode on the left ankle, a negative electrode on the right wrist, and the ground electrode on the right ankle. Typical Lead II values are shown in Table 5.1.

Proper electrode attachment to subject will influence the quality of data collected. In addition, many factors—normal and abnormal—determine R wave amplitude.

- Normal factors include body size (BSA) and distribution of body fat, heart size (ventricular mass), position of the heart in the chest relative to lead locations, metabolic rate, and others.
- Abnormal factors include hyper- and hypothyroidism, ventricular hypertrophy (observed for example, in chronic valvular insufficiency), morbid obesity, essential hypertension and many other pathologic states.

Effects of the Resting Respiratory Cycle on Heart Rate

Temporary minor increases and decreases in heart rate associated with the resting respiratory cycle reflect heart rate adjustments made by systemic arterial and systemic venous pressure receptor (baroreceptor) reflexes in response to the cycling of intrathoracic pressure (Fig. 5.4).

When inspiratory muscles contract, pressure within the thorax (intrathoracic pressure) decreases, allowing thoracic veins to slightly expand. This causes a momentary drop in venous pressure, venous return, cardiac output, and systemic arterial blood pressure. The carotid sinus reflex normally decreases heart rate in response to a rise in carotid arterial blood pressure. However, the momentary drop in systemic arterial blood pressure during inspiration reduces the frequency of carotid baroreceptor firing, causing a momentary increase in heart rate.

When inspiratory muscles relax, resting expiration passively occurs. During early resting expiration, intrathoracic pressure increases causing compression of thoracic veins, momentarily increasing venous pressure and venous return. In response, systemic venous baroreceptors reflexively increase heart rate. However, the slight increase in heart rate is temporary because it increases cardiac output and systemic arterial blood pressure, which increases carotid baroreceptor firing causing heart rate to decrease.

The average resting heart rate for adults is between 60-80 beats/min. (average 70 bpm for males and 75 bpm for females). Slower heart rates are typically found in individuals who regularly exercise. Athletes are able to pump enough blood to meet the demands of the body with resting heart rates as low as 50 beats/min. Athletes tend to develop larger hearts, especially the muscle in the left ventricle—a condition known as “left ventricular hypertrophy.” Because athletes (usually) have larger and more efficient hearts, their ECGs may exhibit differences other than average resting heart rate. For instance, low heart rate and hypertrophy exhibited in sedentary individuals can be an indication of failing hearts but these changes are “normal” for well-trained athletes.

Because ECGs are widely used, basic elements have been standardized to simplify reading ECGs. ECGs have standardized grids of lighter, smaller squares and, superimposed on the first grid, a second grid of darker and larger squares (fig. 5.5). The smaller grid always has time units of 0.04 seconds on the x-axis and the darker vertical lines are spaced 0.2 seconds apart. The horizontal lines represent amplitude in mV. The lighter horizontal lines are 0.1 mV apart and the darker grid lines represent 0.5 mV. In this lesson, you will record the ECG under four conditions.
II. EXPERIMENTAL OBJECTIVES

1) To become familiar with the electrocardiograph as a primary tool for evaluating electrical events within the heart.
2) To correlate electrical events as displayed on the ECG with the mechanical events that occur during the cardiac cycle.
3) To observe rate and rhythm changes in the ECG associated with body position and breathing.

III. MATERIALS

- BIOPAC electrode lead set (SS2LA/L)
- BIOPAC disposable vinyl electrodes (EL503), 3 electrodes per subject
- BIOPAC electrode gel (GEL1) and abrasive pad (ELPAD) or Skin cleanser or alcohol prep
- Biopac Student Lab System: BSL 3.7.5 software and MP45 data acquisition unit
- Computer system
- Cot or lab table and pillow

IV. EXPERIMENTAL METHODS

For further explanation, use the online support options under the Help Menu.

A. SETUP

<table>
<thead>
<tr>
<th>FAST TRACK</th>
<th>DETAILED EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Make sure the equipment is connected as follows: Electrode Lead Set (SS2LA/L)—CH 1</td>
<td>The desktop should appear on the monitor. If it does not appear, ask the laboratory instructor for assistance.</td>
</tr>
<tr>
<td>2. Make sure the BIOPAC MP45 unit is plugged into your computer.</td>
<td>Place one electrode on the medial surface of each leg, just above the ankle. Place the third electrode on the right anterior forearm at the wrist (same side of arm as the palm of hand).</td>
</tr>
<tr>
<td>3. Turn the computer ON.</td>
<td>Note For optimal electrode adhesion, place electrodes on skin at least 5 minutes before Calibration is started.</td>
</tr>
<tr>
<td>4. Place three electrodes on Subject as shown in Fig. 5.6.</td>
<td>When the electrode leads are connected properly, the LEAD II electrode configuration will be established.</td>
</tr>
</tbody>
</table>

Setup continues…
5. Attach the electrode lead set SS2LA/L to the electrodes following Fig. 5.6.

6. Have Subject lie down and relax.

7. Start the BIOPAC Student Lab program.

8. Choose Lesson L05-ECG-1 and click OK.

9. Type in your filename and click OK.

10. Optional: Set Preferences.
 - Choose File > Preferences.
 - Select an option.
 - Select the desired setting and click OK.

END OF SETUP

B. CALIBRATION

Calibration establishes the hardware’s internal parameters (such as gain, offset, and scaling) and is critical for optimum performance. Pay close attention to the following calibration steps.

FAST TRACK

1. Double check electrode connections and make sure Subject is supine, relaxed, and still.

2. Click Calibrate.

3. Check the calibration data:
 - If similar, proceed to Data Recording.
 - If different, Redo Calibration.

 Calibration continues…

DETAILED EXPLANATION

Make sure the electrodes adhere securely to the skin. If they are being pulled up, you will not get a good ECG signal.

Subject must be relaxed and as still as possible during the Calibration. The electrocardiograph is very sensitive to small changes in voltage caused by contraction of skeletal muscles, and Subject’s arms and legs need to be relaxed so that the muscle (EMG) signal does not corrupt the ECG signal.

The Calibrate button is in the upper left corner of the program window. This will start the calibration recording, which will stop automatically after eight seconds.

Subject needs to remain supine, relaxed, and still throughout calibration.

At the end of the 8-sec calibration recording, there should be a recognizable ECG waveform with no large baseline drifts.
END OF CALIBRATION

C. RECORDING LESSON DATA

FAST TRACK

1. Prepare for the recording and have Subject lie down and relax.

DETAILED EXPLANATION

In order to work efficiently, read this entire section so you will know what to do for each recording segment. Subject should remain in a supine position and continue to relax while you review the lesson.

Four conditions will be recorded: Supine, Seated, Breathing deeply, and After exercise. Subject will perform tasks in the intervals between recordings.

Check the last line of the journal and note the total amount of time available for the recording. Stop each recording segment as soon as possible so you don’t use an excessive amount of time (time is memory).

Hints for obtaining optimal data:

a) The electrocardiograph is very sensitive to small changes in voltage caused by contraction of skeletal muscles. To minimize artifact:
 - Subject’s arms and legs need to be relaxed so that the muscle (EMG) signal does not corrupt the ECG signal.
 - Subject should be as still as possible and should not talk or laugh during any of the recording segments.
 - Subject should be in a relaxed state for each recording segment and in the position noted for each segment.

b) When asked to sit, Subject should sit with arms relaxed at side of body and hands apart in lap, with legs flexed at knee and feet supported.

c) For Steps 5-6: Click Resume as soon as possible after Subject sits up in order to capture the heart rate variation, but not while Subject is in the process of sitting up or there will be excessive motion artifact.

Segment 1 — Supine

2. Click Record.

3. Record for 20 seconds and then click Suspend.

When Record is clicked, the recording will begin and an append marker labeled “Supine” will automatically be inserted.

Subject is supine for seconds 0-20. The recording should halt, giving you time to review the data and prepare for the next recording segment.
4. Review the data on the screen.
 - If correct, go to Step 6.
 - If different, click Redo.

5. Have Subject quickly get up and sit in a chair, with arms relaxed and feet supported.

6. Click Resume as soon as possible once Subject sits and relaxes.

7. Record for 20 seconds and then click Suspend.

8. Review the data on the screen.
 - If similar, go to Step 9.
 - If different, click Redo.

 Recording continues...

If data looks similar to Fig. 5.8, you can proceed to Step 5.

 Fig. 5.8 Supine

If data looks similar to Fig. 5.9, proceed to Step 9.

 Fig. 5.9 Seated

The data would be different if:
 a) The Suspend button was pressed prematurely.
 b) An electrode peeled up, causing a large baseline drift, spike, or loss of signal.
 c) Subject has too much muscle (EMG) artifact.

In this case, click Redo and repeat Steps 2-4. Note that when Redo is clicked, the data that was just recorded will be erased.

Subject should sit with arms relaxed at side of body and hands apart in lap, with legs flexed at knee and feet supported for seconds 20-40.

In order to capture the heart rate variation, it is important that you resume recording as quickly as possible after Subject sits. However, it is also important that you do not click Resume while Subject is in the process of sitting or you will capture motion artifact.

When you click Resume, the recording will continue and an append marker labeled “Seated” will be automatically inserted.

Subject remains seated, relaxed, and still while maintaining the original breathing rate.

The recording should halt, giving you time to review the data and prepare for the next recording segment.

If data looks similar to Fig. 5.9, proceed to Step 9.

The data would be different for the reasons in Step 4. If different, redo the recording by clicking Redo and repeating Steps 5-8. Note that once you press Redo, the data that was just recorded will be erased.
Lesson 5: ECG I

Segment 3—Deep Breathing

9. Click Resume.

10. **Subject** remains seated and inhales and exhales as completely as possible for five prolonged (slow) breath cycles.

Recorder inserts event markers at a corresponding inhale and exhale.

 \[\text{“start of inhale” — press F4}\]

 \[\text{“start of exhale” — press F5}\]

11. Click Suspend after 5 breath cycles.

12. Review the data on the screen.
 - If similar, go to Step 13.
 - If different, click Redo.

Segment 4 — After exercise

13. Have **Subject** perform an exercise to elevate his/her heart rate.

When **Resume** is clicked, the recording will continue and an append marker labeled “Deep breathing” will be automatically inserted.

Subject remains seated, relaxed, and still.

After the recording begins, **Subject** should complete a series of five prolonged (slow), deep, breath cycles, inhaling fully and exhaling completely.

Note It is important to breathe with long, slow, deep breaths to help minimize the EMG artifact.

During this time, **Recorder** presses F4 at start of one inhale and F5 at start of corresponding exhale to insert pre-labeled markers. These event markers will help you locate data to complete Table A in the Data Report.

Labels can also be entered manually (F9) or edited after data is recorded.

The recording should halt, giving you time to prepare for the next recording segment.

If data looks similar to Fig. 5.10, proceed to Step 13.

Fig. 5.10 Deep Breathing

The data might be different for the reasons in Step 4.

Note The “Deep breathing” recording may have some baseline drift (as shown previously in Fig. 5.10). Baseline drift is fairly normal and unless it is excessive, it does not necessitate redoing the recording.

If incorrect, click **Redo** and repeat Steps 9-12. Note that when **Redo** is clicked, the data that was just recorded will be erased.

Subject should perform an exercise to elevate his/her heart rate fairly rapidly, such as running up stairs, push-ups, or jumping-jacks.

Note You may remove the electrode cable pinch connectors so that **Subject** can move about freely, but **do not remove the electrodes**.

If you do remove the cable pinch connectors, you must reattach them following the precise color placement in Fig. 5.6 prior to clicking **Resume**.

In order to capture the heart rate variation, it is important that you resume recording as quickly as possible after **Subject** has performed the exercise. However, it is also important that you do not click **Resume** while **Subject** is exercising or you will capture motion artifact.

When **Resume** is clicked, the recording will continue and an append marker labeled “After exercise” will be automatically inserted.
15. Record for 60 seconds.
16. Click **Suspend**.
17. Review the data on the screen.
 - If similar, go to Step 18.
 - If different; click **Redo**.

18. Click **Done**.
19. Click **Yes**.
20. Remove the electrodes.

END OF RECORDING

V. **DATA ANALYSIS**

In this section, you will examine ECG components of cardiac cycles and measure amplitudes (mV) and durations (msecs) of the ECG components.

Note: Interpreting ECGs is a skill that requires practice to distinguish between normal variation and those arising from medical conditions. Do not be alarmed if your ECG is different than the normal values and references in the Introduction.

FAST TRACK

1. Enter the **Review Saved Data** mode.
 - Note Channel Number (CH) designation:
 - CH 1 ECG (Lead II)
 - CH 40 Heart Rate

Data Analysis continues…

DETAILED EXPLANATION

Enter the Review Saved Data mode from Lessons menu.

The data window should come up the same as Fig. 5.12.
Note measurement box settings:

<table>
<thead>
<tr>
<th>Channel</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 40</td>
<td>Value</td>
</tr>
<tr>
<td>CH 1</td>
<td>Delta T</td>
</tr>
<tr>
<td>CH 1</td>
<td>P-P</td>
</tr>
<tr>
<td>CH 1</td>
<td>BPM</td>
</tr>
</tbody>
</table>

The measurement boxes are above the marker region in the data window. Each measurement has three sections: channel number, measurement type, and result. The first two sections are pull-down menus that are activated when you click them.

Brief definition of measurements:

- **Value**: Used to measure BPM, the value measurement displays the amplitude value for the active channel at the point selected by the I-beam cursor.
 - CH 40 heart rate data is only updated at the end of an R-R interval so it remains constant within an R-R interval; therefore, the Value (BPM) measurement will be accurate from any selected point in the R-R interval.
 - Value can also be determined by using the Arrow tool while holding down the left mouse button.

- **Delta T**: Used to measure duration, this is the difference in time between the beginning and end points of the selected area.

- **P-P** (peak-to-peak): Used to measure amplitudes, this finds the maximum value in the selected area and subtracts the minimum value in the selected area.

- **BPM**: *Use only if CH 40 was not recorded.* The Beats Per Minute measurement first calculates the difference in time between the beginning and end of the selected area (seconds/beat), and divides this value into 60 seconds/minute.

The “selected area” is the area selected by the I-beam tool (including endpoints).

2. Set up your display window for optimal viewing of three complete cardiac cycles from Segment 1.

The following tools help you adjust the data window:

- Display menu: Autoscale horizontal, Autoscale waveforms, Zoom Previous
- Scroll Bars: Time (Horizontal); Amplitude (Vertical)
- Cursor Tools: Zoom Tool
- Buttons: Overlap, Split, Adjust Baseline (Up, Down), Show Grid, Hide Grid
3. For measuring heart rate, use the cursor to select any data point within an R-R interval.

 A

4. Take measurements within two other R-R intervals in the current segment.

 A

5. Repeat measurements on the other segments as required for the Data Report.

 A

6. Hide CH 40.

7. **Zoom** in on a single cardiac cycle from Segment 1.

8. Measure Ventricular Systole and Diastole.

 B

Analysis continues…
 \[\text{B} \]

10. **Zoom** in on a single cardiac cycle from Segment 1.

11. Use the I-Beam cursor to select segments to measure the durations and amplitudes required for the Data Report.
 \[\text{C} \]

12. **Zoom** in on a single cardiac cycle from Segment 4.

13. Repeat duration measurements using segment 4 data as required for the Data Report.
 \[\text{C} \]

14. Save or print the data file.

15. Exit the program.

END OF DATA ANALYSIS

Segment 4 starts at the marker labeled “After exercise.”

Be sure to stay in the first recorded segment when you select the cardiac cycle.

Select the components of the ECG as specified in the table and gather data for 3 cycles; if necessary, see Fig. 5.2 and Table 5.1 in the Introduction for selected area details. To paste measurements into the Journal, choose Edit > Journal > Paste measurement.

![Fig. 5.17 sample selection for measuring P wave duration (Delta T) and amplitude (P-P)](image1)

![Fig. 5.18 sample selection for measuring P-R Interval duration (Delta T).](image2)

Follow the examples shown above to complete all the measurements required for your Data Report.

You may save the data to a drive, save notes that are in the journal, or print the data file.

END OF LESSON 5

Complete the Lesson 5 Data Report that follows.
ELECTROCARDIOGRAPHY I

ECG I

DATA REPORT

Student’s Name: ________________________________
Lab Section: ________________________________
Date: ________________________________

I. Data and Calculations

Subject Profile

Name: ________________________________ Height: __________
Age: __________ Gender: Male / Female Weight: __________

A: Heart Rate

Complete the following tables with the lesson data indicated, and calculate the Mean as appropriate;

Table 5.3

<table>
<thead>
<tr>
<th>Segment: Condition</th>
<th>Cardiac Cycle</th>
<th>Mean (calculate)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1: Supine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2: Seated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3: Start of inhale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3: Start of exhale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4: After exercise</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- If CH 40 was not recorded, use 0.

B: Ventricular Systole and Diastole

Table 5.4

<table>
<thead>
<tr>
<th>Segment: Condition</th>
<th>Duration (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ventricular Systole</td>
</tr>
<tr>
<td>1: Supine</td>
<td></td>
</tr>
<tr>
<td>4: After exercise</td>
<td></td>
</tr>
</tbody>
</table>
C: Components of the ECG

Table 5.5

<table>
<thead>
<tr>
<th>ECG Component</th>
<th>Normative Values</th>
<th>Duration (ms)</th>
<th>Amplitude (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Based on resting heart rate 75 BPM</td>
<td>Segment 1 Cycle</td>
<td>Seg 1 Mean (calc.)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Waves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>.07 - .18</td>
<td>< .20</td>
<td></td>
</tr>
<tr>
<td>QRS Complex</td>
<td>.06 - .12</td>
<td>.10 – 1.5</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>.10 - .25</td>
<td>< .5</td>
<td></td>
</tr>
<tr>
<td>Intervals</td>
<td>Duration (seconds)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-R</td>
<td>.12 - .20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q-T</td>
<td>.32 - .36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-R</td>
<td>.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segments</td>
<td>Duration (seconds)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-R</td>
<td>.02 - .10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-T</td>
<td>< .20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-P</td>
<td>0 - .40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note Interpreting ECGs is a skill that requires practice to distinguish between normal variation and those arising from medical conditions. Do not be alarmed if your ECG does not match the “normal values” and references above and in the Introduction.

II. Questions

A. Using data from table 5.3:

1) Explain the changes in heart rate between conditions. Describe the physiological mechanisms causing these changes.

 __
 __
 __
 __
 __
 __

2) Are there differences in the cardiac cycle with the respiratory cycle (segment 3 data)?

 __
 __
 __
 __
 __
 __

B. Using data from table 5.4:

1) What changes occurred in the duration of systole and diastole between resting and post-exercise?

 __
 __
 __
 __
 __
 __
Lesson 5: ECG I

C. Using data from table 5.5:
 1) Compared to the resting state, do the durations of the ECG intervals and segments decrease during exercise? Explain ____________________________

 2) Compare your ECG data to the normative values. Explain any differences. ____________________________

 3) Compare ECG data with other groups in your laboratory. Do their data differ? Explain why this may not be unusual. ____________________________

D. In order to beat, the heart needs three types of cells. Describe the cells and their function.
 1) __
 2) __
 3) __

E. List in proper sequence, starting with the normal pacemaker, elements of the cardiac pacemaker system.
 1) __
 2) __
 3) __
 4) __
 5) __
 6) __
 7) __
 8) __

F. Describe three cardiac effects of increased sympathetic activity, and of increased parasympathetic activity.
 Sympathetic
 __
 __
 __
 Parasympathetic
 __
 __
 __

G. In the normal cardiac cycle, the atria contract before the ventricles. Where is this fact represented in the ECG?
 __

H. What is meant by “AV delay” and what purpose does the delay serve?
 __

I. What is the isoelectric line of the ECG?
 __

J. Which components of the ECG are normally measured along the isoelectric line?
 __

End of Lesson 5 Data Report